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operation has been derived. For four-dimen- 
sional operations involving a pair of identical rota- 
tions two, and only two, of the expected four 
orientational parameters are free parameters. This 
confirms what has hitherto been believed but not 
proven. 
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Abstract 

The X-ray optics in a strained single crystal under 
ultrasonic excitation are considered. The anomalous 
behavior of diffraction intensity, depending on sound 
amplitude, is analyzed. The interference of X-rays 
moving along different trajectories is demonstrated, 
which leads to a new type of Pendell6sung effect, 
depending on the strain gradient and sound 
frequency. Experimental data agree with the theoreti- 
cal predictions. 

I. Introduction 

The problem of ultrasonic influence on X-ray and 
neutron diffraction is now under intensive investiga- 
tion. The most interesting phenomena arise when the 
magnitude of the ultrasound wave vector k is of the 
order of the gap Ako between the branches of the 
dispersion surface (DS) (in the two-beam approxima- 
tion). In this case diffraction is of a multiwave nature, 
since, together with the nodes 0 and H of the 
reciprocal lattice, the points +ink and H + mk will 
be located near the Ewald sphere (Entin, 1979). For- 
mally, if 

k >  Ako (1) 

one speaks about the creation of an ultrasonic super- 
lattice, which strongly modifies the eigenstates of 
diffracted quanta inside the crystal. Such ultrasound 
we will call here a high-frequency wave. 

Interaction between modified Bloch states by 
means of high-frequency ultrasonic perturbation 
leads to new physical effects, such as the resonant 
ultrasonic suppression of the Borrmann transmission 
(Entin, 1977), the ultrasound-induced Pendelli~sung 
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beatings in diffraction intensity (lolin, Zolotoyabko, 
Raitman, Kuvaldin & Gavrilov, 1986; Entin & Puch- 
kova, 1984) and anomalous behavior of diffraction 
intensity in elastically deformed crystals in the pres- 
ence of acoustic waves (Iolin, Raitman, Kuvaldin & 
Zolotoyabko, 1988). 

The latter effect consists of a substantial decrease 
(up to 50%) in the diffraction intensity I at small 
sound amplitudes w (Hw < 1, where H is the magni- 
tude of the reciprocal-lattice vector), in contrast to 
the intensity growth in a thin nondistorted crystal 
undergoing ultrasonic excitation. Such curves were 
first obtained in a neutron diffraction experiment and 
were theoretically explained by E. Iolin in terms of 
the violation of the adiabaticity condition for quanta 
movement, taking into account the inelastic multi- 
phonon scattering (Iolin, 1987). 

Moreover, an additional Pendell6sung effect was 
predicted, due to the interference of waves travelling 
along different trajectories inside the distorted crystal 
under ultrasonic excitation. In contrast with the well 
known results for elastically strained crystals without 
ultrasound (Kato, 1964; Hart, 1966), the new Pendel- 
16sung effect reveals itself in the form of diffraction 
intensity oscillations, measured at definite sound 
amplitudes. The oscillation period depends on the 
strain gradient b and sound frequency v (more pre- 
cisely on the parameter k/zako). Preliminary results 
in this field, obtained with both X-ray and neutron 
beams, were reported at the Twelfth European Crys- 
tallographic Meeting (Iolin, Zolotoyabko, Raitman 
& Kuvaldin, 1989). 

Here we present the detailed data concerning X-ray 
diffraction in elastically strained crystals undergoing 
high-frequency ultrasound. 
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2. Theoretical considerations 

The most suitable description of dynamic scattering 
is achieved in terms of an isoenergetic DS for the 
quanta traveling inside the crystal when the diffrac- 
tion condition is obeyed. In the two-beam approxima- 
tion there is the well known hyperbolic two-branch 
DS (see Fig. la)  with a typical gap Ako=2Zr/r (r is 
the extinction length) which completely determines 
the diffraction pattern. The points on the DS (called 
tie points or dispersion points) correspond to the 
different X-ray incident angles in the vicinity of the 
Bragg angle O~. In the case of a distorted crystal the 
description is in principle more complicated, since 
each place in the sample has its own DS. If strains 
are sufficiently smooth, with the strain gradient b 
satisfying the condition 

B < I ;  B = 2 H b / A k  2 (2) 

the quanta (X-ray or neutrons) move inside the crys- 
tal, 'tuning' adiabatically to the local DS without 
interbranch transitions. As has been shown (Penning 
& Polder, 1961), even in such a situation the diffrac- 
tion process can be described in the framework of a 
single DS. However, the tie points, which are station- 
ary for the undeformed lattice, will now move along 
DS branches in the directions indicated by the arrows 
in Fig. l (a) ,  as quanta penetrate into the crystal. It 
should be emphasized that x projections of point 
velocities (parallel to the crystal surface) have the 
same sign and magnitude for both DS branches. In 
such a representation it is easy to understand the 
growth of the diffraction intensity Id (without the 
ultrasound) in a thin ( /zT< 1, where/z is the linear 
X-ray absorption coefficient, T is the crystal thick- 
ness) distorted crystal in comparison with a perfect 
one, I0. 

Let us consider the state 1 (see Fig. la ) ,  which is 
excited near the entrance sample surface and does 
not give a contribution to the diffraction intensity in 
the case of a perfect crystal, because its group velocity 
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Fig. 1. Quanta movement  in a strained crystal: (a) in momentum 
space  along one dispersion surface; (b) in real space. 

(normal to the DS) is nearly parallel to the direction 
of the incident beam (i.e. directed to the 0 node of 
the reciprocal lattice). For the elastically strained 
crystal (for example, with curved atomic planes) the 
tie point 1 moves under the strain gradient b along 
the DS branch and under definite conditions trans- 
forms into state 4, which already gives a contribution 
to the diffraction intensity, since its group velocity is 
parallel to the direction of the diffracted beam (i.e. 
directed to the H node). The ultrasonic influence in 
such a scheme consists in general of the transition 
stimulation between DS branches. 

Actually, an incident wave excites the states 1 and 
8 on the DS. In the absence of ultrasound point 1 
moves along the trajectory 1-2-3-4 (see Fig. 1) and, 
as mentioned previously, transforms to state 4 corres- 
ponding to a diffracted wave. The direction of the 
movement of point 8 is such that it never gives a 
contribution to the diffraction intensity. Now consider 
a 'switch on' of high-frequency ultrasound with k > 
Ako. Such ultrasound mixes by a resonance process 
the Bloch states on the different DS branches, separ- 
ated by the sound wave vector k, i.e. states, corres- 
ponding to the points 2,6 and 3,7 in Fig. 1. [Due to 
the real structure of X-ray wave functions the mixing 
effectively takes place only for transverse acoustic 
Waves (Iolin & Entin, 1983).] 

In spite of this, the movement of point 8 is not 
disturbed and its contribution to the diffraction 
intensity is again close to zero. The situation is 
changed drastically for point 1. Now, to go to state 
4 it can move along two trajectories: (a) 1-2-6-7-3-4 
and (b) 1-2-3-4. 

At the transition point the tie point has the proba- 
bility RI of remaining on the same DS branch and 
the probability M1 of going over to the other one 
(R~+M~= 1). Then for the (a) process one has a 
probability M 2 and for the (b) process R 2. Thus the 
intensity change AI at the expense of ultrasound is 
given by 

AI/ Id  = ( I -  ld)/Id = I / Id - -  1= R ~ + M  2 -  1 

= -2M1Rz <- O. (3) 

It follows from (3) that ultrasound can decrease 
the diffraction intensity by 50% (M1 -- R1 = ½). These 
qualitative considerations are very successful for 
understanding the nature of ultrasound influence on 
the diffraction intensity. The correct mathematical 
solution has been published (Iolin, 1987; Iolin, Rait- 
man, Kuvaldin & Zolotoyabko, 1988), as have 
expressions for the probabilities R~ and M~, viz 

R l=exp[ -Tr (Hw) / (2B) l /2] ;  M I = I - R 1 .  (4) 

By differentiating (3) and taking into account (4), 
one finds the sound amplitude Wmin corresponding to 
the minimum of the function AI/ Id  

( H w ) m i n  = [(2B)'/2/I7"] In 2. (5) 
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Therefore, the diffraction intensity is essentially 
influenced by the weak acoustic wave with the ampli- 
tude under condition (Hw) 2 -  B < 1. The decrease of 
diffraction intensity is explained by the process 1-2- 
7-8, i.e. interbranch scattering. 

It is known, however, that such a situation can be 
realized without ultrasound at large strain gradients 
where B-> 1. In this case the interbranch scattering 
leads to the restriction of diffraction intensity I by 
the kinematical limit/0o. The probability of the perco- 
lation through the 'potential barrier' ako in the quasi- 
classical approximation is defined by the factor f =  
exp ( -~r /2B)  (Chukhovskii & Petrashen, 1977; Lukas 
& Kulda, 1989). 

From the physical point of view the interbranch 
scattering plays an essential role when the relative 
strain 6 on the reduced extinction length, r/2zr, 
exceeds the angular half width of the diffraction peak, 
/16)o/2: 

= br/2~r >- A6)o/2 = a k o / 2 H .  (6) 

The condition B - 1  immediately follows from (6), 
using the B definition [see (2)]. 

As was previously mentioned, the probability of 
the sound-induced interbranch transition depends on 
the factor exp [ -  ~rHw/(2B)l/2]. This arises because 
of angular satellites on the diffraction curve with 
width A6)s = (Ako/H)Hw (Kohler, Mohling & Peibst, 
1974; Entin, 1979). Additionally, such satellites create 
a new extinction length r~ = r / H w  inside the crystal. 
Correspondingly, the condition (6) should be rewrit- 
ten in the form 

6 = b%/2rr -> A6)~/2. (7) 

From (7) it follows that the significant role of the 
small sound amplitudes is of the order ( H w )  2~'~ B. 

At ( H w )  2 >> B, factor M~ -=-- 1 and due to the intense 
reverse transition (7--> 3) the diffraction intensity is 
restored to the initial value. The action of one-phonon 
scattering is suppressed. Taking into account multi- 
phonon scattering (Iolin, 1987), one obtains the 
dependence of the diffraction intensity on the sound 
amplitude in the shape shown in Fig. 2. We call it 
anomalous since, at small w, a decrease in I(w) takes 
place. Further, at increasing w, the intensity variation 
is linear and finally reaches the same kinematical limit 
Ioo as in the case of large strains without ultrasound. 

The most interesting phenomenon is connected 
with the possible interference of X-ray trajectories. 
As has been noted, state 4 may be reached from point 
1 by two trajectories: 1-2-6-7-3-4  (a) and 1-2-3-4 
(b). Due to the conservation laws the final states 
corresponding to the zero-phonon process (b) and 
the process with phonon absorption and emission (a) 
are identical. Trajectories (a) and (b) meet at a point 
inside the crystal (see Fig. lb)  which is determined 
by the strain gradient b and the ultrasound frequency 
1,. Interference between the amplitudes of the two 

scattering processes leads to the oscillating depen- 
dence (of order B -1 at the fixed v value) of the 
diffraction intensity. These oscillations modify the 
expression (3) as follows: 

AI/ ld = -2R1M,(1 -COS 2q~) (8) 

with phase factor (Iolin, Raitman, Kuvaldin & 
Zolotoyabko, 1988) 

2~o=(g2/B)(D2-1)'/2; a2=k/dko.  (9) 

From the physical point of view it is clear that the 
mechanism of the anomalous behavior of diffraction 
intensity and trajectories interference 'operates' only 
if the strain gradient b exceeds some threshold value 
bth. Actually, the atomic-plane curvature R -1 (for 
pure cylindrical bending R -~ = b) should be enough 
to close the quanta trajectories (Fig. l b) within the 
limits of the crystal thickness T. It can be shown 
(Iolin, Raitman, Kuvaldin & Zolotoyabko, 1988) that 

Bth = (2/Ago T)( ,Q2 _ 1 )1/2. (10) 

Note that interference of the X-ray wave fields 
corresponding to the different DS branches leads to 
the usual Pendellfsung effect in perfect crystals. Less 
trivial is the partial conservation of the wave field 
coherence in elastically deformed crystals (Kato, 
1964; Hart, 1966). This coherence reveals itself again 
in the form of Pendellfsung fringes, but with contrac- 
tion of the fringe period (Hart, 1966; Kato & Ando, 
1966). Such interference takes place (if the incident- 
beam width is sufficient) in spite of the wave vectors 
of X-ray quanta, moving along different paths, not 
being parallel at the meeting point (Fig. l b). The use 
of ultrasound excitation of the strained crystal to 
some extent changes the situation. The deformation 
gradient serves again for the creation of crossing 
trajectories, but ultrasound-induced interbranch 
transitions result in completely identical states of 
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Fig. 2. Calculated relative variation of diffraction intensity AI/ld 
depending on the sound amplitude w. Broken lines represent 
the contributions of rnultiphonon processes (m = 1 , 2 , . . . )  for 
small w. Parameter I~o gives the kinematical limit. 
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X-ray quanta at the meeting point (the wave vectors 
are equal and parallel). Hence, apart from the Kato 
interference in such a system, an additional interfer- 
ence process will exist, namely the interference of the 
above-mentioned trajectories (a) and (b), leading to 
the oscillating behavior of the diffraction intensity 
(under ultrasonic excitation), determined by the com- 
bination of strain gradient and sound frequency. 

Table 1. The values of  extinction length r and threshold 
frequency V,h for Si(hh0) reflections 

Mo Ka, cr polarization. 

hk l  r (~tm) Vth (MHz) 

220 36.6 139.3 
440 54.2 94.1 
660 88.8 57.4 
880 133.8 38.1 

3. Experimental data 

The measurements were carried out with an Si(111) 
single-crystal wafer of diameter 3 in and T = 366 l~m. 
The sample was arranged on the X-ray diffractometer 
in the symmetrical Laue position. The reflections 660, 
880 were used with Mo Ka  radiation. The transverse 
acoustic waves with the wave vector k l l [ l l l  ] and 
polarization vector ell [220] were excited by means of 
a quartz piezocrystal (Y cut, 10x 15 mm, with the 
fundamental harmonic v0 = 18.8 MHz), which was 
attached to the silicon with epoxy resin• The selection 
of sound frequency was done as follows• 

The dependence of the diffraction intensity on 
sound frequency was measured for an unstrained 
crystal• In Fig. 3 an example of such a resonant 
diffraction spectrum for reflection 660 is shown• The 
intensity peaks correspond to the excitation of the 
self-shear vibrations of the Si wafer (standing waves), 
which obey the standard condition 

nc /2v= T (11) 

where c is the sound velocity and n is the harmonic 
number• Thus the silicon wafer operates as an addi- 
tional filter which selects from the quartz resonance 
line (around u = 3 v0) the frequencies in accordance 
with expression (11). In fact, the harmonics with 
n = 7, 8, 9 are seen in Fig. 3. 

Since we are interested in high-frequency ultra- 
sound [condition (1)], it is necessary to know the 
threshold frequencies /~th, corresponding to the 
equality k = Ako: 

utr, = c/'r. (12) 
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Fig. 3. Reflection 660. The resonant X-ray diffraction spectrum I 
(arbitrary units), depending on sound frequency v (MHz). 

The vth values, as well as the extinction lengths r, 
calculated for Si(hh0) reflections with the aid of Si 
structure factors (Teworte & Bonse, 1984) are sum- 
marized in Table 1. 

Elastic strain on the crystal wafer was provided by 
means of a simple bending device, which is schemati- 
cally represented in the insert of Fig. 4. This method 
is not very suitable for measurements in Laue 
geometry (Okkerse & Penning, 1963; Hart, 1965) 
since it leads mainly to the bending of atomic planes 
parallel to the wafer faces [(111) in our case]• 
Nevertheless, as can be seen from our experiments, 
the distortion of the perpendicular 'working' planes 
of the type (220) is sufficient to create visible vari- 
ations of diffraction intensity• 

For strain calibration the magnitudes of the diffrac- 
tion intensity without ultrasound excitation were 
used. Consider first the results obtained for the 660 
reflection near the threshold frequency, when the 
ninth Si harmonic (v = 62.55 >- Vth = 57.4 MHz) was 
used. 
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Fig. 4. Dependence of diffraction intensity I 3 (10 counts/10s) on 
sound amplitude w -~ V for the reflection 6g0 and v = 62.45 MHz. 
Curve 1 corresponds to the unstrained sample. In the upper right 
corner the experimental scheme is represented. 
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3(a) The case v >- v,h 

In the experiment the dependence of the diffraction 
intensity I on the sound amplitude w for different 
elastic strains was measured. The appropriate part of 
the experimental curves is shown in Fig. 4. The sound 
amplitude w is proportional to the voltage V applied 
to the piezocrystal. The higher the curve, the greater 
the wafer bends and dorrespondingly the greater the 
strain value. The formation of the anomalous shape 
of the I (w)  curves (with the decrease of diffraction 
intensity at small sound amplitudes) is clearly seen, 
starting from some threshold strain gradient value. 
Only initial regions of the curves (under weak ultra- 
sonic excitation) are represented in Fig. 4. Measure- 
ments at strong acoustic field give the proof of identity 
of experimental and theoretical curves (Fig. 2) right 
up to the kinematical limit. Note that the situation 
near the threshold frequency is very 'sensitive' to 
elastic strains. The Bth value is very low [see (10)]: 
Bth=0.033; it corresponds to a curvature radius of 
the (2)-0) planes of R -- 1.2 km in the model of cylin- 
drical bending when 

R = b -1 = Hr2/27r2B. (13) 

Further, from Fig. 4 we see that the position of the 
l (w)  minimum depends on the B value. With B 
increasing, the position Vm~n shifts to the right. Rewrit- 
ing (3) [using (4)] in the form 

..411 Id = --2 exp ( - a  V~ B'/2)[ 1 - e x p  ( - a  V~ B '/2) ], 

(14) 

where c~ is an empirical coefficient, describing the 
relation between sound amplitude w and electrical 
voltage V and differentiating with respect to the par- 
ameter V, one obtains 

B (c~2/ln 22) 2 = Vmi n . (15) 

The square of Vmi n is linearly proportional to the B 
value. In Fig. 5 such a dependence, obtained by the 
treatment of I (V)  curves, is represented. The strain 
gradient was derived from the starting diffraction 
intensities Id = I(0) (without ultrasound) by means 
of the expression (see, for example, Iolin, Raitman, 
Kuvaldin & Zolotoyabko, 1988) 

I a / I o = 4 B T / r .  (16) 

For the parameter Io, the magnitude I(0) for curve 
1 in Fig. 4, measured for an unstrained crystal, was 
used. The experimental points in Fig. 5 are in good 
agreement with the linear law, except in the region 
of low strain, where (16) is not valid. After pre- 
liminary checking of the experimental data, a search 
can begin for oscillations due to the possible interfer- 
ence trajectories. 

According to (8), the intensity oscillations must 
occur at each sound amplitude, changing either the 
strain gradient or parameter O, depending on sound 

frequency (9). However, from the experimental point 
of view it is convenient to choose the 'sound effect' 
~7=AI/Id  at the minimum point of I ( V )  and to 
observe its variation under crystal deformation. The 
curve r/(B -1) obtained using this treatment (Fig. 4) 
is shown in Fig. 6. The starting B values were again 
chosen with the aid of (16). 

Note, firstly, that the magnitude of the parameter 
r /never  reaches the predicted value of 50%. It seems 
that the reason is connected with the theoretical 
description in §2, which strictly speaking was 
developed for neutron propagation. For X-rays, the 
time averaging on the standing-wave period must be 
undertaken and such a procedure will lead to a 
decrease of the observable rl values. 

The arrows in Fig. 6 show the positions of the first 
r/ maximum and minimum, calculated by means of 
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Fig. 6. Dependence of the sound effect 7/= zll/ld [at the min imum 
point of I (V)]  on the reduced reciprocal strain gradient B -1. 
Si(660), v = 62.55 MHz. 
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(8) and (9). Although the overall curve behavior  is 
quite reasonable,  it does not give a convincing proof  
of the oscillation pattern. The situation near  the 
threshold frequency is not favorable for the oscilla- 
tion display, since the period A (B -1) between maxima  
and min ima  

A ( B - ' ) = T r / [ ~ ( . Q z - 1 )  ~/2] (17) 

is too large when I2 tends to 1. To obtain more reliable 
data it is necessary to go away from the threshold 
frequency to the region of v > uth. 

3(b) The case ~,> U,h 

This regime can be realized in two ways" firstly, by 
means  of  a simple increase of the 'work'  frequency 
u at given Uth or, secondly,  by the variation of Uth at 
fixed v. The measurements  were completed for both 
of  these. The results for reflection 660, i.e. for U,h = 
57.4 MHz, are given below. 

Measurements  were carried out in the same manner  
as was described in the previous paragraph,  but using 
the sound frequency v=90 .45  MHz. This corres- 
ponds  to the fifth quartz harmonic  and n = 13 har- 
monic  of the silicon wafer. The dependence  of the 
diffraction intensity I on the sound ampl i tude w-'- V 
was measured at different elastic strains. For each 
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Fig. 7. The same data as that in Fig. 6, except u = 90.45 MHz. 
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Fig. 8. The same data as that in Fig. 6, except for Si reflections 
(880) and v = 54.71 MHz. 

curve the sound effect r / - - -Al / ld  was determined at 
the m i n i m u m  point of  the diffraction intensity. These 
data, depending  on the B -l values, are shown in Fig. 
7. The arrows correspond to the extreme positions, 
calculated with (8) and (9). At least two oscillations 
are clearly seen in Fig. 7. Since B~ ~ = 10.6 [see (10)], 
only the part of  these data obtained for B - l <  B~ ~ 
can be rigorously treated in the framework of the 
above-ment ioned theoretical considerations.  Such a 
B t h  - value corresponds to the curvature radius of  the 
(220) planes of R = 415 m. 

At fixed X-ray wavelength we have a single possibil- 
ity to change the threshold frequency Uth using 
another  crystal reflection hkl [see (12)]. Consider  the 
data for h k l = 8 8 0 ,  which were obtained with the 
frequency v = 54.71 > Vth = 38.1 MHz (see Table 1). 
This frequency corresponds to the third quartz har- 
monic  and n = 8 harmonic  of the silicon wafer. The 
sound effect rl depending  on the reciprocal strain 
gradient B -1 [reduced value, according to (2)] is 
shown in Fig. 8. The threshold value B~ ~ = 8.3 corres- 
ponds to R = 988 m. Again, in the region where the 
theory is valid ( B - I < B ; ~ ) ,  there is a qualitative 
agreement  of experimental  data with the calculated 
positions (arrows) of the max ima  and minima.  

4. C o n c l u d i n g  remarks  

The study of X-ray diffraction in an elastically 
strained crystal under  ultrasonic excitation has been 
undertaken.  The results obtained give proof  of the 
fine details of  the quan tum-mechanica l  behavior  of  
X-rays inside a bent crystal. Using the combinat ion  
of elastic strain and high-frequency ul trasound,  we 
can construct two different X-ray trajectories, which 
meet inside the sample and provide at the meeting 
place identical quantum condit ions for X-rays. As a 
result, a new kind of oscil lation in diffraction intensity 
arises, depending  on the reciprocal strain gradient  
b -l and the sound frequency. 

Apart  from the fundamenta l  aspect, such a new 
Pendell6sung effect can in principle be used to 
measure  the elastic strains and curvature of atomic 
planes in single crystals. 

Measurements  were carried out in the Physics 
Institute of the Latvian Academy of Sciences (Riga, 
Latvia, USSR) and we would like to thank colleagues 
from the laboratory of nuclear  methods for technical  
assistance and, especially, Professor E. Iolin for help- 
ful discussions. 
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Abstract 

Rather than an uncritical comparison of experimental 
and theoretical values, the various sets of structure- 
factor values of copper metal derived from experi- 
mental diffraction procedures are mutally compared 
as also are the various sets of theoretical values 
derived from band-structure calculations. This 
approach reveals the presence of outlier sets in each 
group and allows recognition of their condition 
before any attempt is made to intercompare the 
groups. Within the experimental group, the y-ray 
values do not appear to sustain the absolute status 
originally claimed for them. Within the theoretical 
group, an inadequacy in defining the core contribu- 
tion is indicated. The latter conclusion suggests that 
it is an inappropriate operation to make direct com- 
parison between diffraction-sourced experimental 
values of structure factors and theoretical values from 
band-structure calculations. Instead, the latter should 
be used on a complementary basis with the full 
(sin 0)/A range of experimental values to establish 
the best core contribution. The minor valence-bond 
contribution to scattering, which is largely restricted 
to the low (sin 0)/A region, is most sensitively defined 
by reference to band-structure prediction of photo- 
emission spectral distribution. Attention is drawn to 
the possible significance of the form-factor curve 
versus (sin 0)/A being dependent on the unit-cell 
dimension. 
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Introduction 

When there are many published sets of structure- 
factor values which have been determined by various 
experimental means and also those derived by theor- 
etical calculations, comparison procedures to deter- 
mine 'best' values require careful consideration. In 
many cases, experimental and theoretical values have 
been compared quite arbitrarily so that individual 
features intrinsic to experimental details or data 
reduction, on the one hand, or theoretical approxima- 
tions and underlying assumptions, on the other, go 
unrecognized. 

A more logical approach is to consider first the 
two groups separately. This provides a preliminary 
insight into each area, with respect to the spread 
of values, indications of consistency and trends 
with time. Only after such a procedure may it be 
appropriate to make a comparison between the two 
areas. 

Indeed it becomes obvious on applying this 
approach to the published evidence for Cu that even 
a direct comparison of the two areas may not be 
wholly appropriate. Rather, from consideration of 
the bases of the numerical results from the two sour- 
ces, it appears more likely that band-structure calcula- 
tions and structure-factor values from diffraction 
techniques provide complementary (rather than com- 
parable) views of the details of the total charge- 
density distributions in solids. 
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